In this tutorial, we will learn how to convert **NaN** (Not a Number) values to **0** in Python. NaN values are often encountered in scientific computing and data analysis, as they often represent missing, undefined, or unrepresentative data.

Replacing NaN values with zeros can be useful when you want to perform mathematical operations on the data or simply clean it up for better analysis.

### Step 1: Importing the Necessary Libraries

First, let’s import the necessary libraries. For this tutorial, we’ll be using **NumPy** and **Pandas**. If you don’t have these libraries installed already, use the following commands to install them with pip:

1 |
pip install numpy<br>pip install pandas |

Now, let’s import these libraries into our code:

1 2 |
import numpy as np import pandas as pd |

### Step 2: Create a Data Structure with NaN Values

Next, we need to create an example data structure that contains NaN values. For this tutorial, we’ll create a simple **Pandas DataFrame** with NaN values.

1 2 3 4 5 6 7 8 |
data = { 'A': [1, 2, np.nan, 4], 'B': [np.nan, 2, 3, 4], 'C': [1, 2, 3, np.nan] } df = pd.DataFrame(data) print(df) |

A B C 0 1.0 NaN 1.0 1 2.0 2.0 2.0 2 NaN 3.0 3.0 3 4.0 4.0 NaN

As you can see, our DataFrame contains some NaN values.

### Step 3: Convert NaN to 0 Using Pandas

Now let’s use the **fillna()** function from Pandas to replace the NaN values in our DataFrame with 0.

1 2 |
df_no_nan = df.fillna(0) print(df_no_nan) |

A B C 0 1.0 0.0 1.0 1 2.0 2.0 2.0 2 0.0 3.0 3.0 3 4.0 4.0 0.0

The output shows that all NaN values have been successfully replaced with 0.

## Full Code

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 |
import numpy as np import pandas as pd # Create a Data Structure with NaN Values data = { 'A': [1, 2, np.nan, 4], 'B': [np.nan, 2, 3, 4], 'C': [1, 2, 3, np.nan] } df = pd.DataFrame(data) print("Original DataFrame:") print(df) # Convert NaN to 0 Using Pandas df_no_nan = df.fillna(0) print("\nDataFrame with NaN replaced with 0:") print(df_no_nan) |

## Output

Original DataFrame: A B C 0 1.0 NaN 1.0 1 2.0 2.0 2.0 2 NaN 3.0 3.0 3 4.0 4.0 NaN DataFrame with NaN replaced with 0: A B C 0 1.0 0.0 1.0 1 2.0 2.0 2.0 2 0.0 3.0 3.0 3 4.0 4.0 0.0

## Conclusion

In this tutorial, you’ve learned how to convert NaN values to 0 in Python using the Pandas library’s **fillna()** method. This technique is helpful when dealing with missing or undefined data and can make your data easier to analyze, visualize, and process.